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Abstract. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal
cancers with an overall five-year survival rate of 8%. Due to subtle texture changes
of PDAC, pancreatic dual-phase imaging is recommended for better diagnosis
of pancreatic disease. In this study, we aim at enhancing PDAC automatic seg-
mentation by integrating multi-phase information (i.e., arterial phase and venous
phase). To this end, we present Hyper-Pairing Network (HPN), a 3D fully con-
volution neural network which effectively integrates information from different
phases. The proposed approach consists of a dual path network where the two par-
allel streams are interconnected with hyper-connections for intensive information
exchange. Additionally, a pairing loss is added to encourage the commonality be-
tween high-level feature representations of different phases. Compared to prior
arts which use single phase data, HPN reports a significant improvement up to
7.73% (from 56.21% to 63.94%) in terms of DSC.

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the 4th most common cancer of death with
an overall five-year survival rate of 8%. Currently, detection or segmentation at local-
ized disease stage followed by complete resection can offer the best chance of survival,
i.e., with a 5-year survival rate of 32%. The accurate segmentation of PDAC mass is
also important for further quantitative analysis, e.g., survival prediction [1]. Computed
tomography (CT) is the most commonly used imaging modality for the initial evalua-
tion of PDAC. However, textures of PDAC on CT are very subtle (Fig. 1) and therefore
can be easily neglected by even experienced radiologists. To our best knowledge, the
state-of-the-art on this matter is [20], which reports an average Dice of 56.46%. For
better detection of PDAC mass, dual-phase pancreas protocol using contrast-enhanced
CT imaging, which is comprised of arterial and venous phases with intravenous contrast
delay, are recommended.

In recent years, deep learning has largely advanced the field of computer-aided diag-
nosis (CAD), especially in the field of biomedical image segmentation [4,10,11,18,19,13].
However, there are several challenges for applying existing segmentation algorithms to
dual-phase images. First, segmentation of pancreatic lesion, e.g., cysts [17], is more
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(a) Arterial Image (b) Arterial Label (c) Venous Image (d) Venous Label

Fig. 1. Visual comparison of arterial and venous images (after alignment) as well as the man-
ual segmentation of normal pancreas tissues (yellow), pancreatic duct (purple) and PDAC mass
(green). Orange arrows indicate the ambiguous boundaries and differences of the abnormal ap-
pearances between the two phases. Best viewed in color.

difficult than organ segmentation due to its smaller sizes, lower contrast and texture
similarity, etc. Secondly, these algorithms are optimized for segmenting only one type
of input, and therefore cannot be directly applied to handle multi-phase data. More
importantly, how to properly handle the variations between different views requires a
smart information exchange strategy between different phases. While how to efficiently
integrate information from multi-modalities has been widely studied [3,6,16], the direc-
tion on learning multi-phase information has been rarely explored, especially for tumor
detection and segmentation purposes.

To address these challenges, we propose a multi-phase segmentation algorithm,
Hyper-Pairing Network (HPN), to enhance the segmentation performance especially
for pancreatic abnormality. Following HyperDenseNet [3] which is effective on multi-
modal image segmentation, we construct a dual-path network for handling multi-phase
data, where each path is intended for one phase. To enable information exchange be-
tween different phases, we apply skip connections across different paths of the net-
work [3], referred as hyper-connections. Moreover, noticing that a standard segmen-
tation loss (cross-entropy loss, Dice loss [8]) only aims at minimizing the differences
between the final prediction and the groundtruth thus cannot well handle the variance
between different views, we introduce an additional pairing loss term to encourage the
commonality between high-level features across both phases for better incorporation of
multi-phase information. We exploit three structures together in HPN including PDAC
mass, normal panreatic tissues, and pancreatic duct, which serves as an important clue
for localizing PDAC. Extensive experiments demonstrate that the proposed HPN sig-
nificantly outperforms prior arts by a large margin on all 3 targets.

2 Methodology

We hereby focus on dual-phase inputs while our approach can be generalized to multi-
phase scans. With phase A and aligned phase B by the deformable registration, we
have the set S = {

(
XA

i ,X
B
i ,Yi

)
|i = 1, ...,M}, where XA

i ∈ RWi×Hi×Li is the i-th
3D volumetric CT images of phase A with the dimension (Wi ×Hi × Li) = Di and
XB

i ∈ RDi is the corresponding aligned volume of phase B. Yi = {yij |j = 1, ...,Di}
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Fig. 2. (a) The single path network where only one phase is used. The dash arrows denote skip
connections between low-level features and high-level features. (b) HPN structure where mul-
tiple phases are used. The black arrows between the two single path networks indicate hyper-
connections between the two streams. An additional pairing loss is employed to regularize view
variations, therefore can benefit the integration between different phases. Blue and pink stand for
arterial and venous phase, respectively.

denotes the corresponding voxel-wise label map of the i-th volume, where yij ∈ L
is the label of the j-th voxel in the i-th image, and L denotes the label of the target
structures. In this study, L={normal panreatic tissues, PDAC mass, pancreatic duct}.
The goal is to learn a model to predict label of each voxel Ŷ = f(XA,XB) by utilizing
multi-phase information.

2.1 Hyper-connections

Segmentation networks (e.g., UNet [10,2], FCN [7]) usually contain a contracting en-
coder part and a successive expanding decoder part to produce a full-resolution seg-
mentation result as illustrated in Fig. 2(a). As the layer goes deeper, the output features
evolve from low-level detailed representations to high-level abstract semantic repre-
sentations. The encoder part and the decoder part share an equal number of resolution
steps [10,2].

However, this type of network can only handle single-phase data. We construct a
dual path network where each phase has a branch with a U-shape encoder-decoder ar-
chitecture as mentioned above. These two branches are connected via hyper-connections
which enrich feature representations by learning more complex combinations between
the two phases. Specifically, hyper-connections are applied between layers which out-
put feature maps of the same resolution across different paths as illustrated in Fig. 2(b).
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Let R1,R2, ...,RT denote the intermediate feature maps of a general segmentation net-
work, where Rt and RT−t share the same resolution (Rt is on the encoder path and
RT−t is on the decoder path). Hyper-connections are applied as follows: RA

t −→ RB
t ,

RB
t −→ RA

t , RA
t −→ RB

T−t, RB
t −→ RA

T−t,R
A
T−t −→ RB

T−t, RB
T−t −→ RA

T−t, while
maintaining the original skip connections that already occur within the same path, i.e.,
RA

t −→ RA
T−t, RB

t −→ RB
T−t.

2.2 Pairing loss

The standard loss for segmentation networks only aims at minimizing the difference
between the groundtruth and the final estimation, which cannot well handle the vari-
ance between different views. Applying this loss alone is inferior in our situation since
the training process involves heavy integration of both arterial information and venous
information. To this end, we propose to apply an additional pairing loss, which encour-
ages the commonality between the two sets of high-level semantic representations, to
reduce view divergence.

We instantiate this additional objective as a correlation loss [14]. Mathematically,
for any pair of aligned images (XA

i , XB
i ) passing through the corresponding view sub-

network, the two sets of high-level semantic representations (feature responses in later
layers) corresponding to the two phases are denoted as f1(XA

i ;Θ1) and f2(XB
i ;Θ2),

where the two sub-networks are parameterized by Θ1 and Θ2 respectively. The outputs
of two branches will be simultaneously fed to the final classification layer. In order to
better integrate the outcomes from the two branches, we propose to use a pairing loss
which exploits the consensus of f1(XA

i ;Θ1) and f2(XB
i ;Θ2) during training. The loss

is formulated as following:

Lcorr(XA
i ,X

B
i ;Θ) = −

∑N
j=1

(
f1(XA

ij)−f1(XA
i )
)(

f2(XB
ij)−f2(XB

i )
)

√∑N
j=1

(
f1(XA

ij)−f1(XA
i )
)2 ∑N

j=1

(
f2(XB

ij)−f2(XB
i )
)2 , (1)

where N denotes the total number of voxels in the i-th sample and Θ denotes the
parameters of the entire network. During the training stage, we impose this additional
loss to further encourage the commonality between the two intermediate outputs. The
overall loss is the weighted sum of this additional penalty term and the standard voxel-
wise cross-entropy loss:

Ltotal = − 1
N

[
N∑
j=1

K∑
k=0

1(yij = k) log pkij

]
+ λLcorr(XA

i ,X
B
i ;Θ), (2)

where pkij denotes the probability of the j-th voxel be classified as label k on the i-th
sample and 1(·) is the indicator function. K is the total number of classes. The overall
objective function is optimized via stochastic gradient descent.

3 Experiments

3.1 Experiment setup

Data acquisition. This is an institutional review board approved HIPAA compliant ret-
rospective case control study. 239 patients with pathologically proven PDAC were ret-
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rospectively identified from the radiology and pathology databases from 2012 to 2017
and the cases with ≤ 4cm tumor (PDAC mass) diameter were selected for the experi-
ment. PDAC patients were scanned on a 64-slice multidetector CT scanner (Sensation
64, Siemens Healthineers) or a dual-source multidetector CT scanner (FLASH, Siemens
Healthineers). PDAC patients were injected with 100-120 mL of iohexol (Omnipaque,
GE Healthcare) at an injection rate of 4-5 mL/sec. Scan protocols were customized for
each patient to minimize dose. Arterial phase imaging was performed with bolus trig-
gering, usually ∼30 seconds post-injection, and venous phase imaging was performed
∼60 seconds.

Evaluation. Denote Y and Z as the set of foreground voxels in the ground-truth and
prediction, i.e., Y = {i | yi = 1} and Z = {i | zi = 1}. The accuracy of segmentation
is evaluated by the Dice-Sørensen coefficient (DSC): DSC(Y,Z) = 2×|Y∩Z|

|Y|+|Z| . We eval-
uate DSCs of all three targets, i.e., abnormal pancreas, PDAC mass and pancreatic duct.
All experiments are conducted by three-fold cross-validation, i.e., training the models
on two folds and testing them on the remaining one. Through our experiment, abnormal
pancreas stands for the union of normal pancreatic tissues, PDAC mass and pancreatic
duct. The average DSC of all cases as well as the standard deviations are reported.

3.2 Implementation details

Our experiments were performed on the whole CT scan and the implementations are
based on PyTorch. We adopt a variation of diffeomorphic demons with direction-dependent
regularizations [12,9] for accurate and efficient deformable registration between the two
phases. For data pre-processing, we truncated the raw intensity values within the range
[-100, 240] HU and normalized each raw CT case to have zero mean and unit variance.
The input sizes of all networks are set as 64×64×64. The coefficient of the correlation
loss λ is set as 0.5. No further post-processing strategies were applied.

We also used data augmentation during training. Different from single-phase seg-
mentation which commonly uses rotation and scaling [5,20], virtual sets [15] are also
utilized in this work. Even though arterial and venous phase scanning are customized
for each patient, the level of enhancement can be different from patients by variation of
blood circulation, which causes inter-subject enhancement variations on each phase.
Therefore we construct virtual examples by interpolating between venous and arte-
rial data, similar to [15]. The i-th augmented training sample pair can be written as:
X̃

A
i = λXA

i + (1− λ)XB
i , X̃

B
i = λXB

i + (1− λ)XA
i , where λ ∼ Beta(α, α) ∈ [0, 1].

The final outcome of HPN is obtained by taking the union of predicted regions from
models trained with the original paired sets and the virtual paired sets. We set the hyper-
parameter α = 0.4 following [15].

3.3 Results and Discussions

All results are summarized in Table 1. We compare the proposed HPN with the follow-
ing algorithms: 1) single-phase algorithms which are trained exclusively on one phase
(denoted as “single-phase”); 2) multi-phase algorithm where both arterial and venous
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Method Abnormal pancreas PDAC mass pancreatic duct
3D-UNet-single-phase (Arterial) 78.35± 11.89 52.40± 27.53 38.35± 28.98
3D-UNet-single-phase (Venous) 79.61± 10.47 53.08± 27.06 40.25± 27.89
3D-UNet-multi-phase (fusion) 80.05± 10.56 52.88± 26.97 39.06± 27.33
3D-UNet-multi-phase-HyperNet 82.45± 9.98 54.36± 26.34 43.27± 26.33
3D-UNet-multi-phase-HyperNet-aug 83.67± 8.92 55.72± 26.01 43.53± 25.94
3D-UNet-multi-phase-HPN (Ours) 84.32± 8.59 57.10± 24.76 44.93± 24.88
3D-ResDSN-single-phase (Arterial) 83.85± 9.43 56.21± 26.33 47.04± 26.42
3D-ResDSN-single-phase (Venous) 84.92± 7.70 56.86± 26.67 49.81± 26.23
3D-ResDSN-multi-phase (fusion) 85.52± 7.84 57.59± 26.63 48.49± 26.37
3D-ResDSN-multi-phase-HyperNet 85.79± 8.86 60.87± 24.95 54.18± 24.74
3D-ResDSN-multi-phase-HyperNet-aug 85.87± 7.91 61.69± 23.24 54.07± 24.06
3D-ResDSN-multi-HPN (Ours) 86.65± 7.46 63.94± 22.74 56.77± 23.33

Table 1. DSC (%) comparison of abnormal pancreas, PDAC mass and pancreatic duct. We report
results in the format of mean ± standard deviation.

data are trained using a dual path network bridged with hyper connections (denoted
as “HyperNet”). In general, compared with single-phase algorithms, multi-phase algo-
rithms (i.e., HyperNet, HPN) observe significant improvements for all target structures.
It is no surprise to observe such a phenomenon as more useful information is distilled
for multi-phase algorithms.

Efficacy of hyper-connections. To show the effectiveness of hyper-connections, output
from different phases (using single-phase algorithms) are fused by taking at each po-
sition the average probability (denoted as “fusion”). However, we observe that simply
fusing the outcomes from different phases usually yield either similar or slightly better
performances compared with single-phase algorithms. This indicates that simply fusing
the estimations during the inference stage cannot effectively integrate multi-phase infor-
mation. By contrast, hyper-connections enable the training process to be communica-
tive between the two phase branches and thus can efficiently elevate the performance.
Note that directly applying [3] yield unsatisfactory results. Our hyper-connections are
not densely connected but are carefully designed based on previous state-of-the-art on
PDAC segmentation [20] for better segmentation of PDAC. Meanwhile, we show much
better performance of 63.94% compared to 56.46% reported in [20].

Efficacy of data augmentation. From Table 1, compared with HyperNet, HyperNet-aug
witnesses performance gain especially for PDAC mass (i.e., from 60.87% to 61.69%
for 3D-ResDSN; from 54.36% to 55.72% for 3D-UNet), which validates the usefulness
of using virtual paired sets as data augmentation.

Efficacy of HPN. We can observe additional benefit of our HPN over hyperNet-aug
(e.g., abnormal pancreas: 85.87% to 86.65%, PDAC mass: 61.69% to 63.94%, pancre-
atic duct: 54.07% to 56.77%, 3D-ResDSN). Overall, HPN observes an evident improve-
ment compared with HyperNet, i.e., abnormal pancreas: 85.79% to 86.65%, PDAC
mass: 61.69% to 63.94%, pancreatic duct: 54.07% to 56.77% (3D-ResDSN). The p-
values for testing significant difference between hyperNet and our HPN of all 3 targets
are p < 0.0001, which suggests a general statistical improvement. We also show two
qualitative examples in Fig. 3, where HPN shows much better segmentation accuracy
especially for PDAC mass.
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Fig. 3. Qualitative comparison of different methods, where HPN enhances PDAC mass segmen-
tation (green) significantly compared with other methods. (Best viewed in color)
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Fig. 4. Qualitative example where HPN detects the PDAC mass (green) while single-phase meth-
ods for both phases fail. From left to right: venous and arterial images (aligned), groundtruth,
predictions of single-phase algorithms, HyperNet prediction, HPN prediction (overlayed with
venous and arterial images). (Best viewed in color)

Another noteworthy fact is that 11/239 cases are false negatives which failed to
detect any PDAC mass using either phase (Dice = 0%). Out of these 11 cases, 7 cases
are successfully detected by HPN. An example is shown in Fig. 4 — the PDAC mass is
missing from both single phases and almost missing in the original HyperNet (DSC=0.27%),
but our HPN can detect a reasonable portion of the PDAC mass (DSC=61.5%).

The deformable registration error by computing pancreas surface distances between
two phases is 1.01 ± 0.52mm (mean ± standard deviations) which can be considered
as acceptable for this study. However, the effects between different alignments can be
described as a further study.

4 Conclusions

Motivated by the fact that radiologists usually rely on analyzing multi-phase data for
better image interpretations, we develop an end-to-end framework, HPN, for multi-
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phase image segmentation. Specifically, HPN consists of a dual path network where
different paths are connected for multi-phase information exchange, and an additional
loss is added for removing view divergence. Extensive experiment results demonstrate
that the proposed HPN can substantially and significantly improve the segmentation
performance, i.e., HPN reports an improvement up to 7.73% in terms of DSC com-
pared to prior arts which use single phase data. In the future, we plan to examine the
behaviour of HPN when using different alignment strategies and try to extend the cur-
rent approach to other multi-phase learning problems.
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creatic Cancer Research. We thank Fengze Liu, Yingda Xia, Qihang Yu and Zhuotun
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