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Abstract. This paper proposes an intuitive approach to finding pan-
creatic ductal adenocarcinoma (PDAC), the most common type of pan-
creatic cancer, by checking abdominal CT scans. Our idea is named
segmentation-for-classification (S4C), which classifies a volume by check-
ing if at least a sufficient number of voxels is segmented as the tumor.
In order to deal with tumors with different scales, we train volumetric
segmentation networks with multi-scale inputs, and test them in a
coarse-to-fine flowchart. A post-processing module is used to filter out
outliers and reduce false alarms. We perform a case study on our dataset
containing 439 CT scans, in which 136 cases were diagnosed with PDAC
and 303 cases are normal. Our approach reports a sensitivity of 94.1%
at a specificity of 98.5%, with an average tumor segmentation accuracy
of 56.46% over all PDAC cases.

1 Introduction

Pancreatic cancer is one of the most dangerous killers to human lives, causing
more than 330,000 deaths globally in 2014 [11]. Pancreatic ductal adenocarci-
noma (PDAC) is the most common type of pancreatic cancer, accounting for
about 85% of cancer cases. In early stages, this disease often has few symptoms
and is very difficult to discover. By the time of diagnosis, the cancer has often
spread to other parts of the body, leading to a very poor prognosis (e.g., a five-
year survival rate of 5% [11]). But, for cases diagnosed early, the survival rate
rises to about 20% [7]. Hence, it is very important to study the possibility of
detecting PDAC in common examinations, e.g., the abdominal CT scan.

The early diagnosis of pancreatic cancer requires much expertise in reading
the scanned images and making decisions, but the increasing number of cases
makes it impossible for a limited number of experienced radiologists to check all
CT scans manually. Therefore, an artificial intelligence system for this purpose
is in need. In particular, the radiologists in our team are interested in a system
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Fig. 1. Examples of normal and abnormal (PDAC) pancreases (best viewed in color).
Blue and red region mark the pancreas and tumor, respectively. The tumor sizes vary
a lot in the PDAC cases (we show a medium-sized one and a small-sized one).

working on abdominal CT scans, which filters out a large fraction of normal
cases, but preserves almost all abnormal cases for further investigation. To the
best of our knowledge, there is no existing work on this task.

This problem falls into the area of computer-assisted diagnosis (CAD). With
the development of deep learning, in particular the state-of-the-art convolutional
neural networks for image recognition [5][3], it is possible to construct a system
which learns from professional knowledge in data annotation, and apply it to
helping doctors in various clinical purposes. The pancreas is one of the most
challenging organs in CT segmentation [9]. The difficulty mainly lies in its irreg-
ular shape and low contrast around the boundary. Powered by the recent progress
in deep learning for 2D [1][8] and 3D [6][12][18] image segmentation, researchers
designed various approaches [10][16] towards accurate pancreas segmentation. In
the pathological cases, the morphology of the pancreas can be largely impacted
by the difference in the pancreatic cancer stage [14], making it more difficult to
segment the pancreas and lesion areas accurately [15].

This paper is aimed at detecting PDAC from a mixed set of normal and ab-
normal CT scans. This is a classification task [2][4], but we suggest an alternative
solution named segmentation-for-classification (S4C), which trains segmentation
models and uses their outputs for classification. To deal with tumors of various
sizes (see Figure 1), we design deep segmentation network with multiple input
scales, i.e., 643, 323 and 163 volumes. But, voting that small input regions lead
to a high false alarm rate, we adopt a coarse-to-fine testing strategy, which
uses the 643 network for a coarse scan, and then uses the 323 and 163 networks
inside the bounding box to find small tumors that are possibly ignored in the
coarse segmentation. A non-parameterized post-processing algorithm is designed
to filter out outliers. A testing volume is classified as PDAC (abnormal) if at
least 50 voxels are segmented as tumor.

We perform experiments on our own dataset with a mixture of normal and
abnormal CT scans. In tumor segmentation, our multi-scale approach achieves
an average DSC of 56.46% over 136 cases. In classification, we miss 8 out of
136 abnormal cases (sensitivity is 94.1%), and false-alarm 3 of 200 normal cases
(specificity is 98.5%). Both the classification and segmentation results can assist
the radiologists in further investigation, and largely reduce their workload.
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2 The Segmentation-for-Classification Approach

2.1 The Overall Framework

Let a dataset be S = {(X1, y
?
1) , . . . , (XN , y?N )}, where N is the number of CT

scans, Xn ∈ RWn×Hn×Ln is the 3D volume with each element indicating the
Hounsfield unit (HU) of a voxel, and yn ∈ {0, 1} is the label (0 for a normal case, 1
for an abnormal case). Throughout this paper, by abnormal we refer to the cases
diagnosed as PDAC. The goal is to design a model M : y = f(X) to predict the
label for each testing volume. We evaluate our approach by ranking all volumes
by the probability of being a PDAC, computing the sensitivity and specificity at a
given threshold, and plotting the ROC curve indicating the relationship between
the sensitivity and specificity at different thresholds. For clinical purposes, we
shall guarantee a high sensitivity (few PDAC cases are missed) with a reasonable
specificity (there are not too many false alarms).

Although some previous work suggested to classify CT or MRI volumes
directly using 3D networks [2][4], we argue that a better solution is to perform
tumor segmentation at the same time of classification. This makes the classifica-
tion results interpretable by segmentation cues, by which radiologists can take
a further investigation of the suspicious abnormal regions. In addition, this inte-
grates voxel-wise annotations into the classification model as deep supervision, so
that the entire network is better trained [15]. Therefore, we propose a two-stage
framework named segmentation-for-classification, in which a segmentation stage
first extracts voxel-wise cues from the input CT scan, and a classification stage
follows to summarize these information into the final prediction. Our multi-scale
segmentation strategy is different from [17], which applied another network of
the same scale in the fine stage. Tumor detection requires multiple scales.

Mathematically, let each training data be augmented by a segmentation mask
M?

n of the same dimensionality as X, so that m?
n,i ∈ {0, 1, 2} indicates the

category of the i-th voxel, i.e., in the tumor (mn,i = 2), outside the tumor but
inside the pancreas (mn,i = 1), or outside the pancreas (mn,i = 0). Note that
the tumor voxel set is a subset of the pancreas voxel set. The segmentation
module is a high-dimensional function M = s(X), which is implemented by a
deep encoder-decoder network. The classification module is a binary function
y = c(M). The overall framework is thus written as:

y = f(X) = c ◦ s(X). (1)

2.2 Training: Multi-Scale Deeply-Supervised Segmentation

We start with describing the segmentation stage. The tumor region in a pancreas,
as shown in Figure 1, can vary in scale, appearance and geometric properties.
In particular, the largest tumor in our dataset occupies over one million voxels,
but the smallest one has only thousands. This motivates us to train multi-scale
networks to deal with such a large variation in scale.

In practice, we train three networks, taking input volumes of 643, 323 and
163 voxels, respectively. Each segmentation network follows an encoder-decoder
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Fig. 2. The architecture of a 3D deeply-supervised segmentation network (best viewed
in color). Each rectangle is a layer, green arrows indicate operations changing spatial
resolution, and red arrows mean residual connections. We display the situation when
the input volume size is 643. If it is changed to 323 or 163, all volumes are shrunk
accordingly (to 1/23 or 1/43 of the displayed size). The number at the upper-right
corner of each cube is the number of channels. Each convolution uses 3× 3× 3 kernels
with a stride of 1, each pooling 2×2×2 with a stride of 2 (down-sampling by 2), and each
deconvolution 4×4×4 with a stride of 2 (up-sampling by 2). Batch-normalization and
ReLU activation are used after each convolution and deconvolution. The loss function
works by first up-sampling the cube to the output size via deconvolution, followed by a
1×1×1 convolution, and then computing the voxel-wise cross-entropy loss. The weight
ratio for auxiliary losses #1, #2 and the main loss is 1 : 2 : 5 for the 643 network, and
1 : 3 for the auxiliary loss #1 and the main loss for the 323 and 163 networks.

flowchart shown in Figure 2. It has a series of convolutional layers to learn
3D patterns from training data. Down-sampling and up-sampling are imple-
mented by max pooling and deconvolutional layers, respectively. Following [17],
we introduce deep supervision in the training process, which is implemented
by adding several auxiliary losses to intermediate layers. Deep supervision is
considered as a way of incorporating multi-stage visual cues [13], which con-
strains intermediate layers and improves the stability of training deep networks.
Multi-scale segmentation is complementary to deep supervision, which aims at
capturing visual patterns of various scales. As can be seen in experiments, multi-
scale segmentation can take advantage of different scales, i.e., a large network
produces a higher specificity, and a small network enjoys a higher sensitivity.

The training process starts with sampling patches of a specified size. Since
the pancreas and the tumor only occupy a small fraction of the entire volume, a
random sampling strategy may lead to that only few patches contain pancreas
or tumor voxels, and thus the segmentation models are biased towards the
background class. To deal with the issue, we sample lots of foreground patches
for training the 323 and 163 networks. We first compute the region-of-interest
(ROI) by padding a 32-voxel margin around the minimal 3D bounding box
covering the entire pancreas. Within it, we categorize the randomly sampled
patches into three types (i.e., background, tumor and pancreas) according to the
fraction of pancreas and tumor voxels, and make the numbers of training patches
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of these types o be approximately the same. Data augmentation is performed by
randomly flipping patches and rotating by 90◦, 180◦ and 270◦ over three axes.

We use the same configuration for training these networks. The base learning
rate is 0.01 and decayed polynomially (the power is 0.9) in a total of 80,000 iter-
ations (the mini-batch size is 16, 32 and 128 for 643, 323 and 163, respectively).
The weight decay and momentum are set to be 0.0005 and 0.9, respectively.

2.3 Testing: Coarse-to-Fine Segmentation with Post-Processing

The first goal in the testing stage is to perform the pancreas and tumor segmen-
tation. We first slide a 643 window in the entire CT volume. The spatial stride
is 20 along three axes, which is chosen to limit the average testing time for each
case within 11 minutes. Based on the coarse segmentation, we compute the ROI,
i.e., the smallest box covering all pancreas and tumor voxels padded by 32, and
crop the CT image accordingly. Then, we scan the ROI with sliding windows of
323 and 163 voxels, and the strides are set to be 10 and 5, respectively. We do not
run the two small networks on the entire volume because it can easily hallucinate
tumors in the background regions. In addition, shrinking the scanning region for
the 323 and 163 networks leads to a significant speedup in the testing process.
The predictions of three networks are averaged into final segmentation.

Then, based on the segmentation mask, we classify each volume as normal or
abnormal. Advised by the radiologists who desire the classification result to be
explainable, we do not formulate the classifier c(·) as another deep network, but
use a simple, non-parametrized approach to filter out the outliers. We construct a
graph on all voxels predicted as normal pancreas or tumor. Each voxel is a node,
and there exists an edge between the adjacent voxels (each voxel is adjacent to 6
neighbors). We compute all connected component in the graph. A component is
preserved if it is larger than 20% of the maximal connected component, otherwise
it is removed, i.e., all voxels within this component are predicted as background.

Finally, a volume is predicted as PDAC if at least K voxels are predicted
as tumor. In practice, we set K = 50. It is worth noting that our method is
not sensitive to K. Even setting K = 1500 dose not change our results and
observations too much.

3 Experiments

3.1 Dataset and Settings

We collected a dataset with 303 normal cases from potential renal donors, as
well as 136 biopsy-proven PDAC cases. Four experts in abdominal anatomy
annotated the pancreas and tumor voxels on these data using the Varian Velocity
software, and each case was checked by a experienced board certified Abdominal
Radiologist. For a radiologist, an average normal case took 20 minutes, and
an average abnormal case 40 minutes to segment. Since the abnormal cases
are much harder to obtain and annotate than the normal cases, we adopt a
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Scale N. Pancreas A. Pancreas Tumor Misses Sens. Spec.

643 86.90 ± 8.57% 80.98 ± 10.75% 57.25 ± 28.05% 10/136 92.7% 99.0%

323 82.01 ± 12.21% 75.66 ± 19.92% 53.84 ± 26.08% 7/136 94.9% 96.0%

163 61.53 ± 20.64% 64.14 ± 20.16% 42.53 ± 26.63% 4/136 97.1% 86.5%

Multi 84.52 ± 11.11% 78.60 ± 18.34% 56.46 ± 26.23% 8/136 94.1% 98.5%

Table 1. Comparison of segmentation and classification results by networks of different
scales and their combination. From left to right: normal/abnormal pancreas and tumor
segmentation accuracy (DSC, %), the number of missing tumors (i.e., DSC is 0%), and
the sensitivity (= 1 − miss rate) and specificity. Results of the 323 and 163 networks
are based on the predicted bounding box provided by the 643 network, otherwise the
segmentation accuracy is much lower due to a large number of false positives.

4-fold cross-validation on our 136 PDAC scans to have testing results on every
abnormal case while we use a hard split of training and testing on our 303 normal
cases. All in all, each training set contains 103 normal and 102 abnormal cases
where the normal-to-abnormal ratio is fairly close to 1, and each testing set
contains 34 abnormal and 200 normal cases. The average size over all CT scans
is 512× 512× 667.

One of our goals is to measure the segmentation accuracy by the Dice-
Sørensen Coefficient (DSC) between the predicted and the ground-truth tumor

sets Y and Y?, i.e., DSC(Y,Y?) = 2×|Y∩Y?|
|Y|+|Y?| . Our main goal is the abnor-

mality classification, which involves a tradeoff between sensitivity (the fraction
of correctly classified abnormal cases) and specificity (the fraction of correctly
classified normal cases).

3.2 Segmentation Results

We first summarize the segmentation results in Table 1. The 643 network achieves
reasonable pancreas and tumor segmentation accuracies. The segmentation re-
sult of normal pancreas is as high as 86.90%, which means that the normal
pancreases are easier to segment, as there are often unpredicted changes in shape
and geometry in the abnormal cases. As a side comment, the lowest DSC of
an abnormal pancreas is 38.40%, lower than the number (44.03%) of a normal
pancreas. In tumor segmentation, we observe a lower accuracy and a higher
standard deviation (57.25 ± 28.05%). Except for the 10 missing cases, we find
20 more cases with a tumor DSC lower than 30%. All these evidences imply the
challenging of finding tumors especially when they are small.

Going to smaller scales, fewer tumors are missed, but segmentation accuracies
for both pancreas and tumor become lower. This raises the tradeoff between
sensitivity and specificity – a network with a smaller input region has the ability
of detecting tiny regions, but without seeing contexts, it can be easily confused
by the false positives. Therefore, combining multi-scale predictions achieves a
balance between sensitivity and specificity. Figure 3 shows two typical examples
that benefit from multi-scale segmentation.
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Case #5012 643: 0.00% 323: 22.65% 163: 26.68% Multi: 12.24%

Case #5114 643: 24.96% 323: 61.94% 163: 25.15% Multi: 68.65%

Fig. 3. Multi-scale segmentation examples (best viewed in color). Top: a case that
all three scales work well, and multi-scale combines them to achieve a higher DSC.
Bottom: a failure case in the 643 network, but found by the 323 and 163 networks.
The yellow frames indicate the zoomed-in regions, the blue and red contours mark the
annotated pancreas and tumor respectively, and the masked regions mark segmentation
results.
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Fig. 4. Left: three false alarm examples, in which the blue contour marks the annotated
pancreas, and the blue and red regions mark the predicted pancreas and tumor,
respectively. We use yellow arrows to indicate the detected tiny “tumors”. Right: the
ROC curve of multi-scale classification. This figure is best viewed in color.

3.3 Classification Results

Finally, we summarize classification results in Table 1. Radiologists care more
about a high sensitivity since they don’t want to miss a patient who has an
abnormal pancreas, which inspires us to adopt a multi-scale strategy to improve
the sensitivity while keeping a reasonable specificity. The model with multi-scale
information achieves the best overall performance, i.e., a sensitivity of 94.1%
(128/136) at a specificity of 98.5% (197/200). These high scores imply that tumor
segmentation provide strong cues for PDAC screening. We show all three false
alarms in Figure 4. The radiologists of our team confirmed that 2 out of these 3
false positives have focal fatty infiltration in the pancreas corresponding to the
detected “tumors”. Focal fatty infiltration can be difficult for the radiologist to
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distinguish from tumor in current clinical practice. In this case, the predicted
“false alarm” was indeed not normal in view of our radiologists on the CT scan.

Our approach can output a confident score in [0, 1] for each case, indicating
the probability that this case suffers PDAC. This score is computed by a weighted
sum of the number of tumor voxels and the average segmentation probability
of all tumor voxels. Sorting all cases according to their confident scores obtains
a ROC curve of sensitivity and specificity. We can also tune the classification
threshold to change the tradeoff between sensitivity and specificity, e.g., we can
achieve a sensitivity of 98.5% at a specificity of 95.6%, or a specificity of 99.5%
at a sensitivity of 94.1%.

4 Conclusions

In this paper, we study an important and challenging task, i.e., detecting pan-
creases suffering from PDAC in abdominal CT scans. This topic is crucial in
saving lives from pancreatic cancer yet few studied before, possibly due to
the lack of data. We propose a segmentation-for-classification (S4C) framework
which trains a segmentation network and performs abnormality classification by
simply checking the existence of tumor voxels in each testing volume. There are
two key points to improve classification accuracy, known as multi-scale network
training and coarse-to-fine testing. In a dataset containing 303 normal and 136
PDAC cases, we achieve an average tumor segmentation accuracy of over 56%,
and a sensitivity of 94.1% at a specificity of 98.5%. These strong numbers show
promise in clinics.

Our approach enjoys another benefit that producing interpretable predic-
tions, which reduces the workload of human doctors. In the future, we will
combine other cues (e.g., the shape of the pancreas) into our framework, and
explore a joint way of optimizing segmentation and classification.
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