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Abstract

There has been a debate in medical image segmentation
on whether to use 2D or 3D networks, where both pipelines
have advantages and disadvantages. This paper presents a
novel approach which thickens the input of a 2D network, so
that the model is expected to enjoy both the stability and ef-
ficiency of 2D networks as well as the ability of 3D networks
in modeling volumetric contexts. A major information loss
happens when a large number of 2D slices are fused at the
first convolutional layer, resulting in a relatively weak abil-
ity of the network in distinguishing the difference among
slices. To alleviate this drawback, we propose an effective
framework which (i) postpones slice fusion and (ii) adds
highway connections from the pre-fusion layer so that the
prediction layer receives slice-sensitive auxiliary cues. Ex-
periments on segmenting a few abdominal targets in partic-
ular blood vessels which require strong 3D contexts demon-
strate the effectiveness of our approach.

1. Introduction

Medical image segmentation is an important prerequisite
of computer-assisted diagnosis (CAD) which implies a wide
range of clinical applications. Recent years, with the de-
velopment of deep learning, convolutional neural networks
have been widely applied to this area, boosting the perfor-
mance of previously designed handcrafted approaches by a
large margin. On some easy organs and soft tissues, deep
networks have almost achieved or even surpassed human-
level accuracy. However, for some difficult targets in par-
ticular small blood vessels, segmentation accuracy is still
below satisfactory.

The key reason that leads to this deficit lies in the ma-
jor difference from medical images and natural images, i.e.,
medical data are often in a 3D form. To deal with volu-
metric input, two main flowcharts exist. The first method
borrows the idea from natural image segmentation, cutting
the 3D volume into 2D slices, and train a 2D network which
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Figure 1: An example for superior mesenteric artery (SMA)
in the CT scan. SMA is small, and its shape is like a spe-
cially contiguous pipe, so it is difficult to segment when
looked into from a single viewpoint. Upperleft: the axial
view with the SMA area highlighted in red. Upperright: the
label of SMA in a 3D view. Lowerleft and lowerright: seg-
mentation results of the baseline with 3-slice inputs and the
proposed model with 15-slice inputs (with DSC provided).
The thicker inputs lead to much better segmentation.

deals with each slice individually or sequentially. Another
way is to train a 3D network to deal with volumetric data
directly. Both of these two methods have their own advan-
tages and disadvantages. A 2D network makes use of in-
formation in the entire 2D slice, but suffers from the lack
of information of relationship among slices (see Figure 1).
A 3D approach, in opposite, has the perception of 3D con-
texts, but also suffers from two weaknesses: (i) the lack
of pre-trained models which makes the training process un-
stable; and (ii) in the testing stage, fusing patch-wise output
into the final prediction remains tricky and time-consuming.
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This paper presents a novel framework which uses a 2D
network to mimic 3D segmentation. Our idea is motivated
by a few prior work for pseudo-3D segmentation [30][27],
in which three neighboring 2D slices are stacked during
training and testing, so that the 2D network sees a small
range of 3D contexts. However, these approaches still pro-
duced unsatisfying results for the blood vessels, because
recognizing these targets require even stronger 3D contexts
– see Figure 1 for an example. To deal with this problem,
a natural choice is to continue thickening the input of 2D
networks, allowing richer 3D contexts to be seen. However,
this strategy reaches a plateau quickly at 5 or 6 slices, and
adding more slices to 2D networks causes accuracy drop.

The essence lies in information loss. Technically, for
a 2D network, after the first convolutional layer, informa-
tion from all input slices are mixed together, and, without a
specifically designed scheme, it is difficult to discriminate
them from each other. For a regular organ like pancreas,
this does not bring in too much trouble (using 3 slices and
12 slices as input produce comparable accuracy), but for a
blood vessel like superior mesenteric artery (SMA), this can
cause significant accuracy drop (from 73.32% to 71.07%).

We argue that it is the early fusion (information from all
slices are fused in the first convolution) that leads to the in-
formation loss. Therefore, our solution is to postpone the
stage that these information are put together. Our algorithm
can be built upon an arbitrary segmentation baseline. It is
composed of two parts. First, the thickened input is cut into
several groups, each of which has a smaller number, say 3,
of slices. We partition the baseline network into two parts,
with the first part being applied to each group individually,
and the second part processing the re-grouped output of the
first part. With this design, we postpone the stage that in-
formation along the third dimension is fused, and thus alle-
viate the extent of information loss. In addition, to improve
the discriminative power of the fused features, we insert a
highway connection between the pre-fusion stage and the
decision stage, i.e., before the up-sampling operations. The
options of fusing these two sources of information are also
studied in an empirical manner.

Experiments are performed on several abdominal organs
individually, including two regular organs and three blood
vessels in our own dataset, and the hepatic vessels in the
Medcial Segmentation Decathlon (MSD) dataset. Our ap-
proach achieves consistent accuracy gain in particular in the
blood vessels, demonstrating that 3D contexts are indeed in-
corporated into 2D networks.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews related work, and Section 3 presents
our approach. After experiments are shown in Section 4, we
conclude this work in Section 5.

2. Related Work

Semantic Segmentation Semantic segmentation is a crit-
ical problem in computer vision. Conventional methods
based on graph [1] or handcrafted local features [24] have
been gradually replaced by techniques from deep learning,
which could produce higher segmentation accuracy [15, 4].
Various deep network architectures have been proposed and
achieved great performance on large natural image datasets
[11]. As the segmentation networks could be extended to
more and more tasks, researchers also attempt to apply seg-
mentation network to medical imaging analysis, which is
usually based on volumetric data [27, 30, 19].

Computer aided diagnosis Computer aided diagnosis
(CAD) is a research area aiming at helping human doc-
tors in clinics. Recently a lot of CAD approaches are
based on medical imaging analysis to get accurate descrip-
tions of the scanned organs, soft tissues, etc.. One topic
with great importance in this area is object segmentation,
i.e, determining which voxels belong to the target in 3D
data. The progress of deep learning brought more power-
ful and efficient solutions. It has been proved successfully
not only in natural image area [15, 5] but also medical im-
age area [18, 17], outperforming conventional approaches,
e.g., when segmenting the liver [13], the lung [10], or the
pancreas [6, 20]. These deep learning methods in medical
image segmentation can be classified into two main types
according to their way to deal with 3D volume data:

2D Networks Researchers taking this method usually cut
each 3D volume into 2D slices, and train a 2D network
to process each of them individually [18]. Such method
often suffers from missing 3D contextual information, for
which various techniques were adopted, such as using
2.5D data (stacking a few 2D images as different input
channels) [19, 20], training deep networks from different
viewpoints and fusing multi-view information at the final
stage [30, 26, 27], and applying a recurrent network to pro-
cess sequential data [2, 3].

3D Networks In this method, researchers directly train
a 3D network to deal with the volumetric data [7, 17].
These approaches, while being able to see more informa-
tion, often require much larger memory consumption, so
some existing methods worked on small patches [8, 31] and
fused the outputs of all patches. In addition, unlike 2D
networks that can borrow pre-trained models from natural
image datasets [11], 3D networks need to be trained from
scratch, which means it could suffer from unstable conver-
gence properties [21]. One way is to implement a pseudo
3D convolution by a 2D-followed-by-1D convolution [14].
A discussion on 2D vs. 3D models for medical imaging
segmentation is available in [12].
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Figure 2: Network Architecture. Left one is the flowchart of our model, the network (in this paper it refers to a ResNet50)
is divided into two parts. By multiplexing the first part of network, little extra parameters are added. The right one is the
design of a channel-wise non-local module. It would compute the relationship between channels of final feature map and
channels of single slice group feature map, thus leading to a slice-sensitive result. The right part illustrates the detail of
Channel Non-local in the left part.

3. Our Approach
3.1. Problem Statement

In our task, a CT scan can be regarded as a 3D volume
X of size W × H × L which is annotated with a binary
ground-truth segmentation Y where yi = 1 means a fore-
ground voxel. We need to obtain a binary output volume
Z of the same dimension. Denote Y a and Z as the set of
foreground voxels in the ground truth and prediction. i.e.,
Y = { i | yi = 1} and Z = { i | zi = 1}.

3.2. Common 2D Segmentation Network

Suppose our input is a 3D volume X of sizeW ×H×L.
When training 2D deep networks for 3D segmentation,
each 3D volume is sliced along three axes, the coronal,
sagittal, and axial. We denote these 2D slices with
XC,w (w = 1, 2, ...,W ), XS,h (h = 1, 2, ...,H), XA,l

(l = 1, 2, ..., L), where the subscripts C, S and A stand
for coronal, sagittal, and axial, respectively. On each
axis, an individual 2D deep network like UNet [18] or
Deeplab [4] is trained, which are denoted by MC , MS , and
MA, respectively. Without loss of generality, we consider a
2D slice along the axial view, denoted by XA,l. Our goal
is to infer a binary segmentation mask ZA,l of the same di-
mensionality. Usually, this is achieved by first computing a
probability map PA,l = f[XA,l; θ], where f[·; θ] is a deep
segmentation network with θ being network parameters,

and afterwards, PA,l is binarized into ZA,l using a fixed
threshold of 0.5, i.e., ZA,l = I[PA,l ≥ 0.5], and final ax-
ial prediction needs to be grouped ZA = [ZA,1, . . . ,ZA,L].
The final prediction are averaged probability on three axes
P = (PC+PS+PA)

3 , and Z = I[P ≥ 0.5].

3.3. Thickened 2D Segmentation Network

3.3.1 Thickened 2D Inputs and Information Loss

Thickened 2D Inputs for Pseudo-3D segmentation A
typical method to improve 2D network performance on 3D
data is to use three neighboring slices as input instead of
replicating one slice for three times. This brings slight
3D information and enables the 2D network to perform a
pseudo-3D segmentation, which means 2D segmentation
that incorporates 3D information. Segmentation on a 3D
volume data mainly relies on two kinds of information, one
is called intra-slice information, which is what we can know
about a slice from itself. Another is called inter-slice in-
formation, which is what we can know about a slice from
its neighboring slices. Motivated by this, we propose to
thicken 2D inputs. By adding more inter-slice informa-
tion, we believe that it could help improve the pseudo-3D
segmentation one step forward, especially for blood ves-
sels like SMA which features in its contiguous shape along
some axis 1. With thickened 2D inputs, the segmentation
is not based on a single slice XA,l but on a k-slice group



Xk
A,l = [XA,l,XA,l+1, . . . ,XA,l+k−1]. The model takes

a k-slice group as input and also outputs a corresponding
k-slice prediction. And the formulation becomes Pk

A,l =

f[Xk
A,l; θ], where Pk

A,l = [PA,l,PA,l+1, . . . ,PA,l+k−1],
and Zk

A,l = I[Pk
A,l ≥ 0.5].

Regroup Thickened 2D Outputs When grouping thick-
ened 2D outputs into a 3D volume, there can exist over-
lapped slices, so we need a function G to combine
all predictions into one volume, thus we have ZA =
G[Zk

A,1,Z
k
A,2, . . . ,Z

k
A,L], in our paper, function G is aver-

aging the probability of overlapped slices and concatenate
each slice prediction into one volume.

Information Loss Despite that increasing slice thickness
from 1 to 3 can boost performance, we observe that increas-
ing thickness to a larger number can result in performance
drop. For instance, in our experiments 3, using 12-slice in-
put instead of 3-slice on SMA leads to a drop from 73.32%
to 71.07%. We notice that the reason is the information
loss brought by 2D convolution operation which fuses dif-
ferent slices. As we know, a 2D convolution can be re-
garded as weighted-sum of all input channels for each out-
put channel, so there is no special connection between spe-
cific output channel and corresponding input channel, lead-
ing to a confusion of intra-slice information and inter-slice
information. Say RC is a feature map with C channels,
in a typical ResNet network, the feature map mapping is
Rk → R64 → · · · → R2048 → R256 → Rk. For the
input Rk and output Rk, their channels should have one-to-
one relationship in a k-slice medical image segmentation.
When k is small, say 1 or 3, the network could figure out
the mapping relations. But when K is large, say 12, the
network could be confused after so many 2D convolutions
which result in a loss of slice-sensitive information, and this
information loss leads to a worse result.

To address this problem, we propose two methods to re-
duce the information loss when fusing slices.

3.3.2 Solution One: Postpone Fusion Stage

To reduce the information loss, we use multiple small-
thickness groups instead of a whole large-thickness group,
and we also postpone the fusion stage. If every slice is en-
coded into same feature space before fusion, then the fusion
stage will result in fewer loss. If we fuse each mini-group
at the very last layer, there will be no confusion at all, since
all slices individually go through the whole network except
last layer. However, if the fusion stage is too late, we cannot
make full use of inter-slice information with limited compu-
tation. So we need to find a balance point where the loss is
little and the model could benefit from fused feature most.
To achieve this, we divide the original 2D network f[·; θ]
into two parts, f1[·; θ1] and f2[·; θ2]. In the first part of net-
work, each mini-group will forward propagate individually,

and get fused as one unity in second part. Thus a segmenta-
tion procedure on a k-slice group is:



Xk
A,l = [XA,l,XA,l+1, . . . ,XA,l+k−1]

OA,l = f1[XA,l; θ1]

Ok
A,l = fc[OA,l,OA,l+1, . . . ,OA,l+k−1]

Zk
A,l = f2[Ok

A,l; θ2]

ZA = G[Zk
A,1,Z

k
A,2, . . . ,Z

k
A,L]

(1)

where OA,l is an intermediate feature map for slice l at pre-
fusion layer, and Ok

A,l = [OA,l,OA,l+1, . . . ,OA,l+k−1].
fc is a convolution to fuse features from different slices. f1,
f2 are two parts of a complete network f. G is a function
grouping all outputs into one volume, in this paper, G con-
catenates all output slices and average overlapped slices.

As we show in ablation study Table 3, this modification
alone can help the network better figure our the correspond-
ing relationship between input slices and output slices, thus
leading to a better result.

3.3.3 Solution Two: Feature Separable Attention

We further address the problem of information loss. Though
postpone fusion stage can help reduce information loss and
make it easier for network to distinguish the output for each
slice, there still exists some problem. The final feature map
is a mixture of inter-slice information and intra-slice infor-
mation, and the network needs to predict for different slice
based on this same mixed feature map, which would be hard
if no specific-slice information is given. So we introduce
slice-sensitive auxiliary cues from pre-fusion layer to the
final feature map. We add a highway connection from pre-
fusion layer to prediction layer.

Channel-wise Non-local Module Non-local module
could serve as a good way for attention [22] or different
kinds of feature fusion [25]. Inspired by non-local neural
networks [23] and its following work [28], we also apply
non-local module as a way to introduce slice-sensitive in-
formation. Yet in our situation, the main problem lies in
confusion in channel level (see Section 3.3.1). So we de-
sign a channel-wise non-local module to perform the in-
teraction between the slice-specific feature and final mixed
feature. In our work, we propose channel-wise non-local
module(CNLM) to further address the problem of informa-
tion loss. Suppose the input feature map has a shape of
(C,H,W ). Instead of computing the relationship between
each location pair, we compute the correspondence between
each pair of feature dimension (channel), which can be for-
mulated as:

yp =
1

Z(x)

∑
∀q

f(xp, xq)g(xq) (2)



where p, q ∈ {1, ..., C}, xp, xq represent H × W dimen-
sional vectors for the pth and qth channel. A pairwise func-
tion f computes a scalar between channel p and all channel
q. The unary function g computes a representation of the
input x at the channel q. This module intuitively tells where
to look at for each dimension of high level feature, and thus
separate information for each slice from the mixed-up in-
formation during computation.

After equipped with channel-wise non-local module, the
segmentation procedure becomes:



Xk
A,l = [XA,l,XA,l+1, . . . ,XA,l+k−1]

OA,l = f1[XA,l; θ1]

Ok
A,l = fc[OA,l,OA,l+1, . . . ,OA,l+k−1]

Uk
A,l = f2[Ok

A,l; θ2]

ZA,l = CNLM[Uk
A,l,OA,l; η]

ZA = G[Zk
A,1,Z

k
A,2, . . . ,Z

k
A,L]

(3)

where CNLM is channel-wise non-local module with pa-
rameters η. Uk

A,l is the feature for all k slices, which is the
output of second part of network.

3.4. Implementation Details

Backbone We follow the design of Deeplab [4] to mod-
ify a ResNet50 [9] into segmentation network with decoder.
We divide the input slices into 3-slice groups, which means
there are 3 slices in each group. Given that a 2D network
like ResNet50 can handle 3 slices well, thus by 3-slice-
mini-grouping we can use a much larger slice thickness
under same GPU memory limitation. To get meaningful
intra-slice information, each 3-slice group will go through
the first convolution and the following layer1 part of the
network. Afterwards, we concatenate the feature from dif-
ferent groups on channel axis and use two convolutions to
compress it, one will compress the channel number to its
half and another to 256. After going through the remain-
ing part of the network as one unity, we get the mixture of
intra-slice and inter-slice information we want. To extract
the targeted 3-slice features, we use channel-wise non-local
module to deal with specific-slice information and the all-
slice information. Thus we get a prediction focusing on the
targeted slices. The architecture is shown in left part of Fig-
ure 2.

Postpone Fusion Time As we mentioned in Sec-
tion 3.3.2, the later we fuse all this intra-slice feature, the
more distinguishable features we would get. This serves as
an initial encoding of different slices so that fusing them
will be easier and better. We found that fusion after layer1
is good enough and could save more memory and computa-
tion resources compared with later stages. Yet we also be-

Algorithm 1 The Testing Phase of Thickened 2D Networks
Input:
input volume X, viewpoint V = {C, S,A};
network parameters θv which consists of θv1 and θv2 , and
channel non-local module parameters ηv , v ∈ V;
slice thickness k, threshold thr;
Output:
segmentation volume Z;

1: Iv ← X, v ∈ V;
2: Iv1, I

v
2, . . . , I

v
k ← Iv

3: for i in 1, 2, . . . , k:
4: Ov

i ← f1[Ivi ; θv1 ]
5: Ov ← fc[Ov

1, . . . ,O
v
k]

6: Uv ← f2[Ov; θv2 ]
7: for i in 1, 2, . . . , k:
8: Pv

i ← CNLM[Uv,Ov
i ; η

v]
9: Pv ← [Pv

1, . . . ,P
v
k]

10: P = PC+PS+PA

3 , Z = I[P ≥ 0.5]
11: return Z

lieve that we need to postpone the fusion stage furthermore
if we want to thicken the input slices a step forward.

Channel-wise Non-local Module Different from the
original non-local network [23], here the confusion mainly
comes from channel-level instead of pixel-level, so we
change the transpose and matrix multiplication operations
to fit the channel-level situation. Besides, we also replace
two of the three linear part (1×1 convolution followed by
a max pooling) with an adaptive average pooling to 32×32
size followed by a 1×1 convolution as scaling part. The av-
erage pooling and convolution are meant to reduce the vari-
ance of different receptive field. We also add a switchable
normalization [16] to reinforce the module. Channel-wise
non-local module here serves as an attention module and
aims at introducing the targeted individual slice information
in the fused feature map.

Training We train our models using SGD with a mini-
batch size of 8 on 4 GPUs (i.e., 2 samples per GPU).
The model is trained for 100k iterations, with a learning
rate of 0.005, which is decreased by a factor of 10 at it-
eration 70k and 90k. The SGD momentum is 0.9 and
weight decay 0.0005. Besides, we use the ImageNet pre-
trained ResNet50 weight as our model’s initialization. To
align different slice size so that the model could be trained
parallel, images are cropped or zero padded to make sure
that each slice size should be 512×512. The model on
each axis is trained separately. The loss term we use is
the DSC loss proposed in VNet paper [17]. We represent
each probability map with PK

A,l, and denote the loss by
L{YK

A,l,P
K
A,l}. Here YK

A,l is the ground-truth segmenta-



SMA 3-slice baseline VNet VNet (ROI) 15-slice ours
DSCC 71.20% - - 73.06%
DSCS 70.71% - - 72.97%
DSCA 69.62% - - 72.64%
DSCF 73.32% 70.36% 73.49% 74.27%
Celiac AA
DSCC 58.78% - - 60.61%
DSCS 52.61% - - 53.09%
DSCA 58.06% - - 59.98%
DSCF 59.97% 54.38% 63.38% 60.38%
Duodenum
DSCC 67.78% - - 70.16%
DSCS 64.43% - - 68.31%
DSCA 68.87% - - 70.26%
DSCF 72.55% 60.62% 71.43% 73.67%
Pancreas
DSCC 85.43% - - 86.53%
DSCS 85.30% - - 86.34%
DSCA 84.71% - - 86.29%
DSCF 87.15% 84.12% 86.17% 87.36%
Vein
DSCC 74.01% - - 75.45%
DSCS 73.11% - - 74.64%
DSCA 73.35% - - 75.39%
DSCF 75.77% 75.06% 76.90% 76.27%

Table 1: Experiments on SMA, celiac aa, pancreas, duo-
denum, and vein. DSCC means dice score based on coro-
nal plane, DSCS is on sagittal plane, DSCA refers to axial
plane, and DSCF is three-axes fusion result. We evaluate
the final result with DSC and compare our approach with
2D baseline and 3D network. ROI means the 3D network
only deal with data inside ground-truth bounding-box even
when testing.

tion mask, and L{Y,P} = 1 − 2×
∑

i YiPi∑
i Yi+Pi

. The whole
training procedure takes 14 hours on 4 NVIDIA TITAN
Xp GPUs.

Testing We slice the volume into 15-slice groups while
each group has 14 slices overlapped by each other. The fi-
nal prediction is averaged on each slice and each viewpoint.
The output ranges in [0,1] and we use a threshold = 0.5 to
get final prediction.

4. Experiments
4.1. Dataset and Evaluation

To verify that our approach can be applied to various
blood vessels and organs, we collect a large dataset which
contains 200 CT scans. This corpus took 4 full-time radi-
ologists around 3 months to annotate. To the best of our
knowledge, this dataset is large and contains more organs
than any public datasets. We choose several blood vessels
which require more inter-slice information and also other

Hepathic Vessel 3-slice baseline VNet VNet(ROI) 15-slice ours
DSCC 56.19% - - 56.23%
DSCS 55.19% - - 56.80%
DSCA 54.63% - - 58.33%
DSCF 58.09% 51.68% 51.68% 58.86%

Table 2: Experiments on the MSD dataset for hepatic vessel
segmentation.

challenging organs like pancreas and duodenum. We ran-
domly partition the dataset into two folds, one contains 150
cases for training, while another consisting of 50 cases for
testing. Each organ is trained and tested individually. When
a pixel is predicted as more than one organ, we choose the
one with the largest confidence score.

We also conduct experiments on a public dataset from
Medical Segmentation Decalthon which contains 303 cases
of Hepatic Vessels. We use 228 cases for training and 75
cases for testing. The accuracy of segmentation is evaluated
by the Dice-Sørensen coefficient (DSC): DSC (Y,Z) =
2×|Y∩Z|
|Y|+|Z| . This metric falls in the range of [0,1], with 1 im-

plying perfect segmentation.

4.2. Experiment results on Multi-organ Dataset

Results are summarized in Table 1. We have conducted
experiments on several challenging blood vessels and or-
gans, including SMA, celiac aa, vein and pancreas, duode-
num. On blood vessels, single slice based network usually
cannot produce satisfying results, and inter-slice informa-
tion plays an important role here. We also try to apply our
algorithm to other small and challenging organs, proving
that our method also works for other organs besides blood
vessels. With our method, the inter-slice information and
intra-slice information could collaborate in a better way. We
notice that there is a significant improvement in terms of
single axis performance, even comparable with a fusion re-
sult. We also compare the result with a patch-based 3D net-
work VNet [17] to verify our model can make a good use
of 3D information. As we show, due to lack of intra-slice
information, a 3D network suffers from serious false pos-
itive especially on small blood vessels which only take up
thousands of voxels. Our results are also comparable with
a VNet tested with ROI (which means the model only deal
with volumes inside the ground truth bounding box, so there
is no false positive). Our model can benefit from both 2D
network advantage and 3D network advantage.

4.3. Experiment results on MSD Dataset

We further apply our approach on a public dataset –
Hepatic Vessel segmentation in Medical Segmentation De-
cathlon. Hepatic vessels are challenging and hard if ad-
dressed by common 2D networks. The dataset contains 303
cases. We split the dataset into 228 cases for training and 75



3-slice baseline 12-slice baseline 12-slice None 12-slice Concat 12-slice Dot 12-slice channel non-local
DSCC 71.20% 70.15% 72.73% 72.27% 71.16% 73.23%
DSCS 70.71% 67.03% 71.91% 71.83% 71.75% 71.67%
DSCA 69.62% 70.35% 72.18% 72.04% 71.21% 72.54%
DSCF 73.32% 71.07% 73.63% 73.07% 73.74% 74.17%

Table 3: Compare different settings. Here baseline means directly input multi-slice at the beginning. None means only
postpone the fusion stage. Concat, dot, and channel-wise non-local mean different way to introduce slice-sensitive intra-
information to the final feature map.

3-slice ours 6-slice ours 9-slice ours 12-slice ours 15-slice ours 18-slice ours 21-slice ours 24-slice ours
DSCC 70.37% 72.49% 73.07% 73.23% 73.06% 73.04% 72.73% 72.72%
DSCS 70.49% 71.34% 71.65% 71.67% 72.97% 72.17% 73.17% 72.46%
DSCA 70.70% 70.59% 72.76% 72.54% 72.64% - - -
DSCF 72.61% 73.21% 74.05% 74.17% 74.27% 73.61% 74.17% 73.78%

Table 4: Different slice thickness for our method on SMA. We tried different slice thickness from 3 to 24. It can be observed
that our model performs well even for a much larger slice thickness. ’-’ means the model does not converge, if some plane
result is missing, the fusion will be the average on the remaining planes.

SMA Celiac AA Duodenum
3-slice baseline 18.60 12.79 21.88
12-slice baseline 20.70 12.99 20.68
15-slice Ours 11.42 11.37 19.05

Table 5: Inter-slice similarity among different methods
compared with GT. The results are based on axial plane.
Smaller number is better.

cases for validation. Results are shown in Table 2. Our re-
sults outperforms both 2D baseline and 3D baseline, which
illustrates the ability of our approach in incorporating more
inter-slice information.

4.4. Ablation Experiments

We have done two ablation experiments, one is to know
each modification influence and another to know compare
our method performance under different slice thickness.

Different type of introducing slice-sensitive information
We have tried different ways to combine the specific-slice
feature and all-slice feature based on 12-slice models. The
results are shown in Table 3. As we can see, directly fusing
the different types of feature can already bring benefits to
the model. But the improvement will be less if we introduce
slice-sensitive information in a naive way, like concatenate
or element-wise dot. With a channel-wise non-local mod-
ule, the feature maps will be updated based on channel-
wise relationship before sum, thus the performance can be
boosted higher.

More slices input We tried different slice thickness to
test our model capacity, from at least 3-slice to at most
24-slice under 12G GPU memory. The results are summa-
rized in Table 4. We found that the results keep increas-

ing until slice thickness reaches 15, while the axial model
over 18-slice model cannot converge. The trend of perfor-
mance increase has a different relationship when slice thick-
ness increases. For plane X, a major improvement happens
when slice thickness increase from 3 to 6 (+2.12%). And
slice thickness over 9 produce similar results. For plane Y,
there happen two major improvements, one is from 3 to 6
(+0.85%) and another is from 12 to 15 (+1.30%), while 6-
slice, 9-slice, and 12-slice have similar accuracy. For plane
Z, when increasing slice numbers from 6 to 9, the result in-
creases by 2.17%. It seems that there exist some bottlenecks
when increasing slice thickness, and breaking through the
bottleneck can bring most significant improvement.

4.5. Visualization and Diagnoses

Qualitative Results We visualize a case of Hepathic Ves-
sel and a case of celiac AA segmentation (see Fig 3) with
ITK-SNAP [29]. First two rows are for Hepathic Vessel, we
could see that it is contiguous with multi-branch, just like
a tree. Compared with baseline, our method can do better
in capturing this vessels’ contiguity. As for Celiac AA, the
third row is our baseline result and the fourth is results of
our 15-slice thickened 2D network. In the baseline, single-
view prediction suffers from lack of contextual information,
leading to an unsatisfying result. In our method, even sin-
gle view could capture the contiguous shape of celiac aa
and achieve a good result, even better than baseline fusion.
We observe no obvious failure (a typical fail in baseline sin-
gle axis result) and a better segmentation consistency in our
approach.

Statistical Diagnose To prove that our method achieves
a better performance because it can distinguish each slice
more clearly, we design a statistics called inter-slice simi-
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Figure 3: 3D visualization for Hepathic Vessel (the first two rows) and Celiac AA (the last two rows with first baseline and
second our method) segmentation result. This figure is best viewed in color.

larity. We compute the dice score between each two neigh-
boring slices along a certain axis, forming a vector. We
use this vector to represent a volume prediction neighboring
slice similarity. By comparing this vector from prediction
with that from ground-truth, we can evaluate each method
on how well they can distinguish neighboring slices. We use
L2-distance to evaluate the similarity between two vectors.
By comparing our algorithm with 3-slice baseline and 12-
slice baseline on all testing cases, we show that our method
has a better distinguish ability, which makes it possible for
our model to predict more accurate on each slice even the
there is a thickened input. The result is summarized in Ta-
ble 5.

5. Conclusions
This paper is motivated by the need of capturing 3D

contexts, and aims at designing a network structure which
works on thickened 2D inputs. The major obstacle is the in-

formation loss brought by fusion along the third dimension.
We propose two keys to deal with this issue, i.e., postpon-
ing the stage of information fusion, and creating a shortcut
connection between the pre-fusion stage and the final de-
cision stage. Evaluated on a few medical image segmen-
tation datasets, our approach reports higher segmentation
accuracy with thickened input data, demonstrating the ef-
fectiveness of 3D contexts.

Our research sheds light on designing efficient 3D net-
works for segmenting volumetric data. The success of our
approach provides a side evidence that both 2D and 3D net-
works are not the optimal solution, as 2D methods bene-
fit from natural image pre-training but inevitably lack con-
texts, meanwhile 3D methods usually waste time and mem-
ory for unnecessary computations. Absorbing advantages
from both of them remains an open problem and deserves
more efforts in future research.
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[7] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and
O. Ronneberger. 3D u-net: learning dense volumetric seg-
mentation from sparse annotation. In MICCAI, 2016. 2

[8] M. Havaei, A. Davy, D. Warde-Farley, A. Biard,
A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, and
H. Larochelle. Brain tumor segmentation with deep neural
networks. Medical image analysis, 35:18–31, 2017. 2

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 5

[10] S. Hu, E. A. Hoffman, and J. M. Reinhardt. Automatic lung
segmentation for accurate quantitation of volumetric x-ray ct
images. IEEE transactions on medical imaging, 20(6):490–
498, 2001. 2

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 2

[12] M. Lai. Deep learning for medical image segmentation.
arXiv preprint arXiv:1505.02000, 2015. 2

[13] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P. A. Heng. H-
denseunet: Hybrid densely connected unet for liver and liver
tumor segmentation from ct volumes. IEEE Transactions on
Medical Imaging, 2017. 2

[14] S. Liu, D. Xu, S. K. Zhou, O. Pauly, S. Grbic, T. Mertelmeier,
J. Wicklein, A. Jerebko, W. Cai, and D. Comaniciu. 3d

anisotropic hybrid network: Transferring convolutional fea-
tures from 2d images to 3d anisotropic volumes. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 851–858. Springer,
2018. 2

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3431–3440, 2015. 2

[16] P. Luo, J. Ren, and Z. Peng. Differentiable learning-to-
normalize via switchable normalization. arXiv preprint
arXiv:1806.10779, 2018. 5

[17] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image
segmentation. In 2016 Fourth International Conference on
3D Vision (3DV), pages 565–571. IEEE, 2016. 2, 5, 6

[18] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer,
2015. 2, 3

[19] H. R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turk-
bey, and R. M. Summers. Deeporgan: Multi-level deep con-
volutional networks for automated pancreas segmentation. In
MICCAI, 2015. 2

[20] H. R. Roth, L. Lu, A. Farag, A. Sohn, and R. M. Summers.
Spatial aggregation of holistically-nested networks for auto-
mated pancreas segmentation. In MICCAI, 2016. 2

[21] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B.
Kendall, M. B. Gotway, and J. Liang. Convolutional neural
networks for medical image analysis: Full training or fine
tuning? IEEE transactions on medical imaging, 35(5):1299–
1312, 2016. 2

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017. 4

[23] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural
networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 4, 5

[24] Z. Wang, K. K. Bhatia, B. Glocker, A. Marvao, T. Dawes,
K. Misawa, K. Mori, and D. Rueckert. Geodesic patch-based
segmentation. In International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, pages
666–673. Springer, 2014. 2

[25] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krähenbühl,
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