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Abstract. Deep convolutional neural networks (CNNs), especially fully
convolutional networks, have been widely applied to automatic medi-
cal image segmentation problems, e.g., multi-organ segmentation. Ex-
isting CNN-based segmentation methods mainly focus on looking for
increasingly powerful network architectures, but pay less attention to
data sampling strategies for training networks more effectively. In this
paper, we present a simple but effective sample selection method for
training multi-organ segmentation networks. Sample selection exhibits
an exploitation-exploration strategy, i.e., exploiting hard samples and
exploring less frequently visited samples. Based on the fact that very
hard samples might have annotation errors, we propose a new sample
selection policy, named Relaxed Upper Confident Bound (RUCB). Com-
pared with other sample selection policies, e.g., Upper Confident Bound
(UCB), it exploits a range of hard samples rather than being stuck with
a small set of very hard ones, which mitigates the influence of annota-
tion errors during training. We apply this new sample selection policy to
training a multi-organ segmentation network on a dataset containing 120
abdominal CT scans and show that it boosts segmentation performance
significantly.

1 Introduction

The field of medical image segmentation has made significant advances riding on
the wave of deep convolutional neural networks (CNNs). Training convolutional
deep networks (CNNs), especially fully convolutional networks (FCNs) [7], to
automatically segment organs from medical images, such as CT scans, has be-
come the dominant method, due to its outstanding segmentation performance.
which also sheds lights to many clinical applications, such as diabetes inspection,
organic cancer diagnosis, and surgical planning.

To approach human expert performance, existing CNN-based segmentation
methods mainly focus on looking for increasingly powerful network architectures,
e.g., from plain networks to residual networks [5,11], from single stage networks
to cascaded networks [14], from networks with a single output to networks with
multiple side outputs [9,14]. However, there is much less study of how to select
training samples from a fixed dataset to boost performance.
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Fig. 1. Some examples in a abdominal CT scans dataset which have annotations errors.
Left: vein is included in pancreas segmentation; Middle & Right: missing pancreas
header.

In the training procedure of current state-of-the-art CNN-based segmenta-
tion method [17,13,12,6,4], training samples (2D slices for 2D FCNs and 3D
sub-volumes for 3D FCNs) are randomly selected to iteratively update network
parameters. However, some samples are much more difficult to segment than
others, e.g., those which contain more organs with indistinct boundaries or with
very small sizes. It is known that using hard sample selection, or called boot-
strapping1, for training deep networks yields faster training, higher accuracy,
or both [15,8,16]. Hard sample selection strategies for object detection [15] and
classification [8,16] base their selection on the training loss for each sample, but
some samples are hard may due to annotation errors, as shown in Fig. 1. This
problem may not be significant for the tasks in natural images, but for the tasks
in medical images, such as multi-organ segmentation, usually requires very high
accuracy, and thus the annotation errors are more significant. Our experiments
show that the training losses of samples (such as the samples in Fig. 1) with
annotation errors are very large, and even larger than real hard samples.

To address this problem, we propose a new hard sample selection policy,
named Relaxed Upper Confident Bound (RUCB). Upper Confident Bound (UCB) [2]
is a classic policy to deal with exploitation-exploration trade-offs [1], e.g., ex-
ploiting hard samples and exploring less frequently visited samples for sample
selection. UCB was used for object detection in natural images [3], but UCB
is easy to be stuck with some samples with very large losses, as the selection
procedure goes on. In our RUCB, we relax this policy by selecting hard samples
from a larger range, but with higher probability for harder samples, rather than
only selecting some very hard samples as the selection procedure goes on. RUCB
can escape from being stuck with a small set of very hard samples, which can
mitigate the influence of annotation errors. Experimental results on a dataset
containing 120 abdominal CT scans show that the proposed Relaxed Upper Con-
fident Bound policy boosts multi-organ segmentation performance significantly.

2 Methodology

Given a 3D CT scan V = (vj , j = 1, ..., |V |), the goal of multi-organ segmentation

is to predict the label of all voxels in the CT scan Ŷ = (ŷj , j = 1, ..., |V |), where

1 In this paper, we only consider the bootstrapping procedure that selects samples
from a fixed dataset.
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ŷj ∈ {0, 1, ..., |L|} denotes the predicted label for each voxel vj , i.e., if vj is
predicted as a background voxel, then ŷj = 0; and if vj is predicted as an organ
in the organ space L, then ŷj = 1, ..., |L|. In this section, we first review the basics
of the Upper Confident Bound policy [2], then elaborate our proposed Relaxed
Upper Confident Bound policy on sample selection for multi-organ segmentation.

2.1 Upper Confident Bound (UCB)

The Upper Confident Bound (UCB) [2] policy is widely used to deal with the
exploration versus exploitation dilemma, which arises in the multi-armed bandit
(MAB) problem [10]. In a K-armed bandit problem, each arm k = 1, ...,K is
recorded by an unknown distribution associated with an unknown expectation.
In each trial t = 1, ..., T , the learner A takes an action to choose one of K

alternatives g(t) ∈ {1, ...,K} and collects a reward x
(t)
g(t). The objective of this

problem is to maximize the long-run cumulative expected reward
∑T

t=1 x
(t)
g(t).

But, as the expectations are unknown, the learner can only make a judgement
based on the record of the past trails.

At trial t, the UCB selects the alternative k maximizing

x̄k +

√
2 lnn

nk
, (1)

where x̄k =
∑n

t=1 x
(t)
k /nk is the average reward obtained from the alternative

k based on the previous trails, x
(t)
k = 0 if xk is not chosen in the t-th trail. nk

is the number of times alternative k has been selected so far and n is the total
number of trail done. The first term is the exploitation term, whose value is
higher if the expected reward is larger; and the second term is the exploration
term, which grows with the total number of actions have been taken but shrinks
with the number of times this particular action have been tried. At the beginning
of the process, the exploration term dominates the selection, but as the selection
procedure goes on, the one with the best expected reward will be chosen.

2.2 Relaxed Upper Confident Bound (RUCB) Boostrapping

Fully convolutional networks (FCNs) [7] are the most popular model for multi-
organ segmentation. In a typical training procedure of an FCN, a sample (e.g., a
2D slice) is randomly selected in each iteration to calculate the model error and
update model parameters. To train this FCN more effectively, a better strategy
is to use hard sample selection, rather than random sample selection. As sample
selection exhibits an exploitation-exploration trade-off, i.e., exploiting hard sam-
ples and exploring less frequently visited samples, we can directly apply UCB
to select samples, where the reward of a sample is defined as the network loss
function w.r.t. it. However, as the selection procedure goes on, only a small set of
samples with the very large reward will be selected for next iteration according
to UCB. The selected sample may not be a proper hard sample, but a sample
with annotation errors, which inevitably exist in medical image data as well
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as other image data. Next, we introduce our Relaxed Upper Confident Bound
(RUCB) policy to address this issue.

Procedure We consider that training an FCN for multi-organ segmentation,
where the input images are 2D slices from axial directions. Given a training set
S = {(Ii,Yi)}Mi=1, where Ii and Yi denote a 2D slice and its corresponding label
map, and M is the number of the 2D slices, like the MAB problem, each slice
Ii is set to be associated with the number of times it was selected ni and the
average reward obtained through the training J̄i. After training an initial FCN
with randomly sampling slices from the training set, FCN is boostrapped several
times by sampling hard and less frequently visited slices. In the sample selection
procedure, rewards are assigned to each training slice once, then the next slice
on which to train FCN is chosen by the proposed RUCB. The reward of this slice
returned by FCN is then fed into RUCB and updates the statistics in RUCB.
This process is then repeated to select another slice based on the new updated
statistics, until a max-iteration N is reached. Statistics are reset to 0 before
beginning a new boostrapping phase because slices that are chosen in previous
rounds may no longer be informative.

Relaxed Upper Confident Bound We denote the corresponding label map
of the input 2D slice Ii ⊂ RH×W as Yi = {yi,j}j=1,...,H×W . If Ii is selected to
update the FCN in the t-th iteration, the reward obtained for Ii is computed by

J (t)
i (Θ) = − 1

H ×W

H×W∑
j=1

|L|∑
l=0

1 (yi,j = l) log p
(t)
i,j,l

 , (2)

where p
(t)
i,j,l is the probability that the label of the j-th pixel in the input slice is

l, and p
(t)
i,j,l is parameterized by the network parameter Θ. If Ii is not selected

to update the FCN in the t-th iteration, J (t)
i (Θ) = 0. After n iterations, the

next slice to be selected by UCB is the one maximizing J̄
(n)
i +

√
2 lnn/ni, where

J̄
(n)
i =

∑n
t=1 J

(t)
i (Θ)/ni.

Preliminary experiments show that reward defined above is usually around
[0, 0.35]. The exploration term dominates the exploitation term. We thus nor-
malize the reward to make a balance between exploitation and exploration by

J̃
(n)
i = min

{
β,
β

2

J̄
(n)
i∑M

i=1 J̄
(n)
i /M

}
, (3)

where the min operation ensures that the score lies in [0, β]. Then the UCB score
for Ii is calculated as

q
(n)
i = J̃

(n)
i +

√
2 lnn

ni
. (4)

As the selection procedure goes on, the exploitation term of Eq. 4 will dom-
inate the selection, i.e., only some very hard samples will be selected. But,
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Algorithm 1: Relaxed Upper Confident Bound

Input : FCN parameter Θ, input training slices {Ii}i=1,...,M ;
parameters α and β;
max number of iterations T ;

Output: FCN parameter Θ;
1 total number of times slices are selected n← 0;
2 number of times slice I1, ..., Im are selected n1, ...., nm ← 0;
3 running index i← 0;

4 J (1)
1 , ...,J (M)

M ← 0;
5 repeat
6 i← i+ 1, ni ← ni + 1, n← n+ 1;

7 Compute J (i)
i by Eq. 2;

8 J̄
(M)
i =

∑M
t=1 J

(i)
i /ni;

9 until n = M ;

10 ∀i, compute J̃
(M)
i by Eq. 3, compute q

(M)
i by Eq. 4;

11 µ =
∑M

i=1 q
(M)
i /M , σ = std(q

(M)
i );

12 iteration t← 0;
13 repeat
14 t← t+ 1;
15 α ∼ U(0, a);

16 K =
∑M

i=1(1(q
(M)
i > µ+ ασ));

17 randomly select a slice Ii from the set {Ii|q(n)
i ∈ DK({q(n)

i }
M
i=1)};

18 ni ← ni + 1, n← n+ 1;

19 Compute J (t)
i by Eq. 2, Θ← arg minΘ J (t)

i (Θ);

20 J̄
(n)
i =

∑n
t=1 J

(t)
i /ni;

21 ∀i, compute J̃i by Eq. 3, compute q
(n)
i by Eq. 4;

22 until t = T ;

these hard samples may have annotation errors. In order to alleviate the in-
fluence of annotation errors, we propose to introduce more randomness in UCB
scores to relax the largest loss policy. After training an initial FCN with ran-
domly sampling slices from the training set, we assign an initial UCB score

q
(M)
i = J̃

(M)
i +

√
2 lnM/1 to each slice Ii in the training set. Let us assume the

UCB scores of all samples follow a normal distribution N (µ, σ). Hard samples
are regarded as slices whose initial UCB scores are larger than µ. Note that
initial UCB scores are only decided by the exploitation term. In each iteration
of our bootstrapping procedure, we count the number of samples that lie in the

range [µ+ α · std(q
(M)
i ),+∞], denoted by K, where α is drawn from a uniform

distribution [0, a] (a = 3 in our experiment), then a sample is selected randomly

from the set {Ii|q(n)i ∈ DK({q(n)i }Mi=1)} to update the FCN, where DK(·) denote
the K largest values in a set. Here we count the number of hard samples ac-
cording to a dynamic range, because we do not know the exact range of hard
samples. This dynamic region enables our bootstrapping to select hard samples
from a lager range with higher probability for harder samples, rather than only
selecting some very hard samples. We name our sample selection policy Relaxed
Upper Confident Bound (RUCB), as we choose hard samples in a larger range,
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which introduces more variance to the hard samples. The training procedure for
RUCB is summarized in Algorithm 1.

3 Experimental Results

3.1 Experimental Setup

Dataset: We evaluated our algorithm on 120 abdominal CT scans of normal
cases under IRB (Institutional Review Board) approved protocol. CT scans are
contrast enhanced images in portal venous phase, obtained by Siemens SO-
MATOM Sensation64 and Definition CT scanners, composed of (319-1051) slices
of (512×512) images, and have voxel spatial resolution of ([0.523-0.977]× [0.523-
0.977]×0.5)mm3. Sixteen organs (including aorta, celiac AA, colon, duodenum,
gallbladder, interior vena cava, left kidney, right kidney, liver, pancreas, superior
mesenteric artery, small bowel, spleen, stomach, and large veins) were segmented
by four full-time radiologists, and confirmed by an expert. This dataset is a high
quality dataset, but a small portion of error is inevitable, as shown in Fig. 1. Fol-
lowing the standard corss-validation strategy, we randomly partition the dataset
into four complementary folds, each of which contains 30 CT scans. All exper-
iments are conducted by four-fold cross-validation, i.e., training the models on
three folds and testing them on the remaining one, until four rounds of cross-
validation are performed using different partitions.

Evaluation Metric: The performance of multi-organ segmentation is evaluated
in terms of Dice-Sørensen similarity coefficient (DSC) over the whole CT scan.
We report the average DSC score together with the standard deviation over all
testing cases.

Implementation Details: We use FCN-8s model [7] pre-trained on Pas-
calVOC in caffe toolbox. The learning rate is fixed to be 1×10−9 and all the
networks are trained for 80K iterations. Three boostrapping phases are con-
ducted, at 20,000, 40,000 and 60,000 respectively, i.e., the max number of itera-
tions for each boostrapping phase is T = 20, 000. We set β = 2, since

√
2 lnn/ni

is in the range of [3.0, 5.0] in boostrapping phases.

3.2 Evaluation of RUCB

We evaluate the performance of the proposed sampling algorithm (RUCB) with
other competitors. Three sampling strategies considered for comparisons are (1)
uniform sampling (Uniform); (2) online hard example mining (OHEM) [15]; and
(3) using UCB policy (i.e., select the slice with the largest UCB score during
each iteration) in boostrapping.

Table 3.2 summarizes the results for 16 organs. Experiments show that im-
ages with wrong annotations are with large rewards, even larger than real hard
samples after training an initial FCN. The proposed RUCB outperforms over
all baseline algorithms in terms of average DSC. We see that RUCB achieves
much better performance for organs such as Adrenal gland (from 29.33% to
36.76%), Celiac AA (34.49% to 38.45%), Duodenum (63.39% to 64.86%), Right
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Organs Uniform OHEM UCB RUCB (ours)
Aorta 81.53 ± 4.50 77.49 ± 5.90 81.02 ± 4.50 81.03 ± 4.40
Adrenal gland 29.33 ± 16.26 31.44 ± 16.71 33.75 ± 16.26 36.76 ± 17.28
Celiac AA 34.49 ± 12.92 33.34 ± 13.86 35.89 ± 12.92 38.45 ± 12.53
Colon 77.51 ± 7.89 73.20 ± 8.94 76.40 ± 7.89 77.56 ± 8.65
Duodenum 63.39 ± 12.62 59.68 ± 12.32 63.10 ± 12.62 64.86 ± 12.18
Gallbladder 79.43 ± 23.77 77.82 ± 23.58 79.10 ± 23.77 79.68 ± 23.46
IVC 78.75 ± 6.54 73.73 ± 8.59 77.10 ± 6.54 78.57 ± 6.69
Left kidney 95.35 ± 2.53 94.24 ± 8.95 95.53 ± 2.53 95.57 ± 2.29
Right kidney 94.48 ± 9.49 94.23 ± 9.19 94.39 ± 9.49 95.40 ± 3.62
Liver 96.03 ± 1.70 90.43 ± 4.74 95.68 ± 1.70 96.00 ± 1.28
Pancreas 77.86 ± 9.92 75.32 ± 10.42 78.25 ± 9.92 78.48 ± 9.86
SMA 45.36 ± 14.36 47.18 ± 12.75 44.63 ± 14.36 49.59 ± 13.62
Small bowel 72.35 ± 13.30 67.44 ± 13.22 72.16 ± 13.30 72.88 ± 13.98
Spleen 95.32 ± 2.17 94.56 ± 2.41 95.16 ± 2.17 95.09 ± 2.44
Stomach 90.62 ± 6.51 86.37 ± 8.53 90.70 ± 6.51 90.92 ± 5.62
Veins 64.95 ± 19.96 60.87 ± 19.02 62.70 ± 19.96 65.13 ± 20.15
AVG 73.55 ± 10.28 71.08 ± 11.20 73.47 ± 10.52 74.75 ± 9.88

Table 1. DSC (%) of sixteen segmented organs (mean ± standard deviation).

Aorta 

Adrenal Gland 

Celiac AA 

Colon 

Duodenum 

Gallbladder 

IVC 

Kidney L

Kidney R

Liver 

Pancreas 

SMA 

Small Bowel 

Spleen 

Stomach 

Veins 

UCB RUCB

Fig. 2. Visualization of samples selected frequently by left: UCB and right: RUCB.
Ground-truth annotations are marked in different colors.

kidney (94.48% to 95.40%), Pancreas (77.86% to 78.48%) and SMA (45.36% to
49.59%), compared with Uniform, which also shows our dataset is in high qual-
ity, where only a small portion of errors are contained. Most of the organs listed
above are small organs which are difficult to segment. Besides, RUCB achieves
74.07±9.84 after 60K iterations, which is even better than UCB trained in 80K
iterations. This also shows the efficiency of RUCB.

OHEM performs worse than Uniform, suggesting that directly sampling among
slices with largest average rewards during boostrapping phase cannot help to
train a better FCN. UCB obtains even slightly worse DSC compared with Uni-
form, as it only focuses on some hard examples which may have errors.

To better understand UCB and RUCB, some of the hard samples selected
more frequently are shown in Fig. 2. Some slices selected by UCB contain obvious
errors such as Colon annotation for the first one. Slices selected by RUCB are
very hard to segment since it contains many organs including very small ones.
Parameter Analysis α is an important hyper-parameter for our RUCB. We
vary it in the following range: α ∈ {0, 1, 2, 3}, to see how the performance of
some organs changes. The DSC of Adrenal gland and Celiac AA are 35.36±17.49
and 38.07±12.75, 32.27±16.25 and 36.97±12.92, 34.42±17.17 and 36.68±13.73,
32.65±17.26 and 37.09±12.15, respectively. Using a fixed α, the performance
decreases. We also test the results when K is a constant number, i.e., K = 5000.
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The DSC of Adrenal gland and Celiac AA are 33.55±17.02 and 36.80±12.91.
Compared with UCB, the results further verify that relaxing the UCB score can
boost the performance.

4 Conclusion

We proposed Relaxed Upper Confident Bound policy for sample selection in
training multi-organ segmentation networks, in which the exploitation-exploration
trade-off is reflected on one hand by the necessity for trying all samples to train a
basic classifier, and on the other hand by the demand of assembling hard samples
to improve the classifier. It exploits a range of hard samples rather than being
stuck with a small set of very hard samples, which mitigates the influence of
annotation errors during training. Experimental results showed the effectiveness
of the proposed RUCB sample selection policy.
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